Printed Page:	Subject Code:- ACSBS0205 Roll. No:
NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) B.Tech SEM: II - THEORY EXAMINATION (2023 - 2024)	
Time: 3 Hou	Subject: Linear Algebra urs Max. Marks: 100
 This Question Questions (MC) Maximum m Illustrate you Assume suite Preferably, v 	at you have received the question paper with the correct course, code, branch etc. In paper comprises of three Sections -A, B, & C. It consists of Multiple Choice (Q's) & Subjective type questions. Arks for each question are indicated on right -hand side of each question. For answers with neat sketches wherever necessary. Able data if necessary. Arvite the answers in sequential order. Fould be left blank. Any written material after a blank sheet will not be
SECTION-A	20
(CO (a) 1 (b) 2 (c) -2	what value of x, matrix $\begin{bmatrix} 6-x & 4 \\ 3-x & 1 \end{bmatrix}$ is a singular matrix?
1-b. If A is (a) (b) (c)	a square matrix such that $A^2 + I = 0$, then A equals (CO1) 1 0 0 1 i 0 0 i 1 2 -1 1 one of these
` ,	rank of a matrix A is 2, then the rank of A' is (CO2)

(d) none of these The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix}$ is (CO2) 1-d. 1 2 (a) (b) 3 (c) 4 None of these (d) Which of the set of vectors are linearly dependent? (CO3) 1-e. 1 (1, 1, 4), (1, 0, 0), (1, 1, 0)(1, 2, 4), (1, 0, 0), (0, 1, 0), (0, 0, 1)(b) (1, 2, 4), (1, -1, 0), (0, 0, 1)None of these (d) The null space of linear transformation from R^3 into R^3 defined as (CO3) 1-f. 1 (1, 2, 3)(a) (1, 0, 0)(b) (c) (0, 1, 0)(0, 0, 0)(d) A square matrix A is positive semi definite if it is symmetric and 1 1-g. CO₄ (a) $x^T A x \ge 0$ (b) $x^T A x \leq 0$ $x^T A x = 0$ (c) None of these (d) If A is skew-Hermitian matrix, then iA is (CO4) 1-h. 1 Skew-Hermitian matrix (a) Hermitian matrix (b) Symmetric matrix (c) None of these (d) If $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$ then Eigen values of A^3 .(CO5) 1-i. 1 (a) 1,4 (b) 1,64 4,4 (c) None of these (d) 1-j. 1 If 0 is a Eigen value of a matrix iff the matrix is (CO5) Non singular (a)

- Unitary (b)
- Singular (c)
- (d) None of these

2. Attempt all parts:-

2.a. Express the matrix
$$\begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$$
 as the sum of a symmetric and a skew symmetric matrix. (CO1)

2.b. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. (CO2)

2.c. Show that the vectors
$$S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$
 in \mathbb{R}^3 is linearly independent. (CO3)

2.d. For the matrix A, Find the sum of eigen values where (CO4)
$$A = \begin{bmatrix} -2 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

2.e. In singular value decomposition if
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$
 then find S? (CO5)

3. Answer any <u>five</u> of the following:-

3-a. Solve by Cramer's rule:
$$x+y+z=2$$
, $2x+y+3z=9$ and $x-3y+z=10$ (CO1)

3-b. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ verify that $(AB)C = A(BC)$ and $A(B+C) = AB + BC$. (CO1)

3-c. Show that the vectors
$$X_1 = \begin{bmatrix} 2 & 3 & 1 - 1 \end{bmatrix}$$
, $X_2 = \begin{bmatrix} 2 & 3 & 1 - 2 \end{bmatrix}$, $X_3 = \begin{bmatrix} 4 & 6 & 2 & 1 \end{bmatrix}$ are linearly dependent (CO3 Express one of the vectors as a linear combination of others.

Find the values of a and b such that the rank of matrix
$$\begin{bmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{bmatrix}$$
 is 2.(CO2)

3.e. If u and v are any two vectors in an inner product space V. show that II u +v

6

3.e. If u and v are any two vectors in an inner product space V. show that II u +v
$$II^2 + II u - v II^2 = 2II u II^2 + 2II v II^2$$
.

3.f. Find the eigenvalues and eigenvectors of a matrix of
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
. (CO4)

3.g. Find a singular value decomposition of the matrix
$$A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$$
.(CO5)

4. Answer any one of the following:-

4-a. Solve the system of equations by matrix method: (CO1)
$$x+2y-3z=4$$
, $2x+3y+2z=2$ and $3x-3y-4z=11$.

If $A = \begin{bmatrix} 1 & 2 & 1 \\ a & 0 & 4 \\ 1 & 1 & 1 \end{bmatrix}$ and adj(adj. A) = A, find a. (CO1) 4-b. 10

- 5. Answer any one of the following:-
- 5-a. Determine the value of λ and μ so that the equations x+y+z=6, x+2y+3z=10, 10 $x+2y+\lambda z=\mu$ have
 - (i) no solution, (ii) a unique solution and (iii) infinite many solutions. (CO2)
- 5-b For what values of 'k', the equations x+y+z=1, x+y+4z=k, $4x+y+10z=k^2$ 5-b. 10 have a solution and solve them completely in each case. (CO2)
- 6. Answer any one of the following:-
- Show that the transformation T: $V_2(R) \rightarrow V_3(R)$ defined as 6-a. 10 $T(a, b)=(a+b, a-b, b) \forall a,b \in R$ is linear. Find its null space, nullity, range and rank.(CO3)
- 6-b. Apply Gram- Schmidt process to transform the basis $\{(1,1,1), (0,1,1), (0,0,1)\}$ into 10 an orthonormal basis.(CO3)
- 7. Answer any one of the following:-
- 7-a. 10 Find the eigen values and eigen vector of the matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & -2 & -8 \\ 0 & -5 & 1 \end{bmatrix}$. (CO4)
- Show that the matrix $\begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha i\gamma \end{bmatrix}$ is an unitary matrix if $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$. 7-b. 10 CO 4
- 8. Answer any one of the following:-

y:

11

- Find the singular values of the $A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and find the SVD decomp 8-a.
- Given the following data, use PCA to reduce the dimension from 2 to 1.(CO5) 8-b. 10 Feature Example 1 Example 2 Example 3 Example 4 4 7 13 X:

4

5

14